
Copyright © 1999, Massimo Arnoldi, Kent Beck, Markus Bieri, and Manfred Lange. All rights reserved.

Time Travel:
A Pattern Language for

Values That Change
Massimo Arnoldi, LifeWare

Kent Beck, Daedalos Consulting
Markus Bieri, LifeWare

Manfred Lange, Hewlett-Packard

By splitting business objects for Time Travel and always processing through
Period Enumeration, you can write systems with minimal extra complexity that
make it possible to flexibly navigate and process changing business objects.

Introduction
You get a raise on 1 March but the system doesn’t find out about it until mid-May. In the meantime,
who knows what happens? Reconciling these two time lines, world time and system time, is one of
the most difficult problems to solve in writing information systems. Many of the actions in business
are irreversible. It is complicated and expensive to take an incorrect check back. To “make the check
right”, you must discover what happened and to fix the situation.

Another significant problem of writing business information systems is that the rhythms of the world
are not the rhythms of the system. You would like to make changes, like giving an employee a raise in
the middle of a pay period if that made sense. You would then like the system to behave reasonably
under these conditions.

The simplest business option for dealing with the difference between world time and system time is
just to ignore the distinction and hope nobody notices. We have seen many systems that took exactly
this approach. If the customers are unlikely to notice and the consequences are small enough, you
might get away with pretending that all changes are instantaneous and perfect, perhaps even forever.

This isn’t a very satisfying answer, nor is it an adequate solution when the consequences of
calculating the wrong answer are severe or if not being able to fix an answer that later proves to be
wrong causes hurts the business.

Solving two problems when time flows by at two different rates-
• navigating through changes,
• processing changes on a time scale dictated by the business and not by the system-

is the focus of this pattern language.

Underlying Value System
Lurking beneath the surface of these patterns is a definite view of how the world should be for people
in two groups whose lives are most affected by computers- customers and those who answer the
customers’ calls. We believe that representatives should be treated as thinking people who are capable
of initiative and judgement. The computer should be there to:
• Help the representative notice that intervention is necessary
• Provide the representative with the information necessary to make a decision
• Help the representative implement a decision once it is made
• Automate tedious or routine work that can better be done by the computer, leaving the

representative more time and energy to apply to the problem of serving customers.

These patterns are written with this bias in mind.

Besides communicating the Time Travel pattern language, a secondary purpose of this paper is to
experiment with a new style of presenting patterns. The patterns here contain less information than is
usual, but are supplemented by being embedded in a development narrative, as if we were
programming together.

We use the following icons to distinguish the different phases of the development narrative:

• Story

• Test case

• Implementation

Patterns
The patterns in the language are:

Pattern Summary
Version History You have an object whose changes you need to track. Split the

object into two parts. One part is immutable. One is a snapshot
of the changeable state.

Perspective Create a Perspective object to represent a point of view into the
history of a versioned object.

Effective Date Separately record the date on which the system should act as if a
version is valid.

Period Enumeration For a Period and a History, iterate over the Versions valid in that
Period using #in:do:.

Long Transactions Explicitly represent long business transactions, and create a
special Perspective so partially completed Versions are visible
only from inside the transaction.

Evaluated Version Give Versions containing continuously changing values a
chance to update those values during lookup.

Missing Version Before there are any valid Versions, return a Special Case
Version.

Invalid Version After the History is over, return a Special Case Version.
Trade Date/Settle
Date

Record Versions with a Perspective that remembers both trade
and settle dates. Navigate with Perspectives that query one or
the other date.

Implicit Navigation Share a Perspective so clients do not need to use Time Travel if
they do not wish to.

Here is a map of the patterns (patterns in italics are only covered in outline form in this paper):

Time Travel

Perspective

Effective Date

Evaluated Version
Missing Version

Invalid Version

Trade Date/Settle Date

Long Transactions

Period Enumeration

Navigation Story

Imagine we are working with a payroll system. An employee is paid based on a daily rate recorded in
their contract. The pay rate changes from time to time. Periodically, the employee is actually paid
based on the days worked and the pay rates in force when those days were worked.

The first story is that of a payroll employee who has to answer questions about paychecks.
“Hello, payroll support here.”
“I just got my paycheck, and I want to know why I received $1500 this month and only $1000
last month.”
“Well, sir, I see that you got a raise on the first of this month.”
“I got that raise last month.”
“I’m sorry about that. I see that the raise wasn’t recorded in our system until this month. We
adjusted your paycheck to reflect the increase. You should receive $1250 per month from
now on.”

The next step is turning these vague ideas into concrete code. We will do this by first presenting a set
of test cases that, if they can be satisfied, will enable us to build the system implied by the stories.
Then we will show, with patterns and with code, how the test cases can be satisfied.

The simplest possible test case is the one where the contract never changes:
NavigationTest>>testNaivePayToday
 | contract |
 contract := Contract pay: 1000.
 self assert: contract pay = 1000

The naïve object model of a contract, for example, contains a single object to represent the contract.
However, contracts change over time. The business relationship remains the same, somehow, but the
details change.

To help answer the questions posed by the employee, the system must keep track of changes and
when they happened. The simplest test case that helps reach this goal allows us to look up the pay rate
on a particular date. Before we can write the test case, though, we must first introduce the pattern that
transforms an immutable Contract to a Contract that can have changing pay rates:

Contract>>versionAt: aDate
 ^self versions detect: [:each | aPerspective > each date]

The next test case shows that we can look up pay rates even if the pay rate changes:
NavigationTest>>testPayLastMonth
 | contract firstVersion secondVersion |
 contract := Contract new.
 firstVersion := ContractVersion pay: 1000.
 contract versionAt: '1/1/99' asDate put: firstVersion.
 secondVersion := ContractVersion pay: 2000.
 contract versionAt: '2/1/99' asDate put: secondVersion.
 self assert: (contract versionAt: '1/1/99' asDate) pay = 1000.
 self assert: (contract versionAt: '2/1/99' asDate) pay = 2000

This test case is already satisfied by the code above.

 “I got that raise last month.”
“I’m sorry about that. I see that the raise wasn’t recorded in our system until this month. We
adjusted your paycheck to reflect the increase. You should receive $1250 per month from
now on.”

In the next test case we store a pay rate that should have been effective at an earlier date. On 1 March
we discover that on 1 February we should have given the employee a raise.

This test case will require two new patterns, Perspective and Effective Date. Perspective replaces the
Date as a storage and lookup key with a more sophisticated object. Effective Date is an example of the
kind of extra information that can be stored in a Perspective.

Perspective

Values are changing. How do you represent a point of view into that stream of changes?

Borrowing from the metaphor of accounting, we call the basic representation of perspective a
“posting date”. The posting date is the date on which a piece of data officially entered the system. In
the context of Time Travel, this is the date on which a Version is committed to its History.

Create a Perspective object. Give it a Posting Date or Timestamp.

Consider including an Effective Date or Trade Date/Settle Date in the Perspective.

Using this pattern we change all the occurrences of “asDate” in the above test cases to
“asPerspective”.

Now we need an Effective Date, so we can complete the thought “on 1 March [posting date] we
discover that we should have given the employee a raise on 1 February [effective date].”

Effective Date

When you find out a fact is not necessarily when you would like to act like that fact is true.
How do you represent the difference between when something you discover a fact and when
you would like the system to act like the fact was true?

Add an effective date to the Perspective. Take the effective date into consideration when
computing visibility.

The existing test cases use a simple form of Perspective where the posting date and effective date are
the same. The new test case uses a retroactive Perspective.

NavigationTest>>testWhereIsMyRaise
 | contract firstVersion secondVersion correction |
 contract := Contract new.
 firstVersion := ContractVersion pay: 1000.
 contract versionAt: '1/1/99' asPerspective put: firstVersion.
 secondVersion := ContractVersion pay: 2000.
 correction := Perspective
 posting: '3/1/99' asDate
 effective: '2/1/99' asDate.
 contract versionAt: correction put: secondVersion.
 self assert: (contract versionAt: '2/1/99' asPerspective) pay = 1000.
 self assert: (contract versionAt: ‘3/1/99’ asPerspective) pay = 2000.
 self assert: (contract versionAt: correction) pay = 2000

If we look up the pay rate effective on 1 February based on what we knew on 1 February, we get the
old (and in retrospect wrong) value. If we look up the value on 1 March, we get the new value. And if
we use the perspective of the correction, we get the new value.

We need to teach the Perspective the difference between when something happened in the outside
world and when the computer learned about it.

Perspective and Effective Date together represent the 2 dimensions of time.

 Figure 1 Figure2 Figure3

Figure1 represents the ideal case where posting date is identical to effective date. Figure2 represents a
change in the future: today we commit a contract that will go in force tomorrow. Figure3 represents a
classical retroactive change: only today do we learn about a change that happened yesterday

The separation of effective date and posting date adds considerably to the complexity of the software.
The implementation of the objects becomes more complex. The interface to the objects is also more
complex, because you must supply two dates instead of just one. We hide some of the complexity
behind the Perspective object.

The simple implementation of #versionAt: using #> to compare Perspectives does not suffice
anymore. We have to introduce the notion of visibility between two perspectives.

The rule for one Perspective “seeing” another is:

1. A Perspective can only see another if the viewing Perspective has a posting date the same or after
the viewed Perspective. You can only see into the past, not the future.
Insert a picture of the two lines with an eyeball on posting, black circles to its left and open
circles to its right.

2. Given 1., a Perspective can only see another if the view Perspective has an effective date the same
or after the viewed Perspective. Even if the system found out about a change that is to happen in
the future, if necessary you should act like it hasn’t happened yet.
Insert a picture of the two lines with an eyeball on effective, black circles to its left and open
circles to its right.

Visually, a Perspective can only see another if the viewed Perspective lies completely to the left of the
viewing Perspective:

Figure: Cannot see either a or b.

PerspectiveTest >>setUp
 today := Perspective
 posting: Date today
 effective: Date today.
 yesterday := Perspective
 posting: (Date today addDays: -1)
 effective: (Date today addDays: -1).
 retroactive := Perspective
 posting: (Date today addDays: 1)
 effective: (Date today addDays: -1).
 proactive := Perspective
 posting: (Date today addDays: -1)
 effective: (Date today addDays: 1)

PerspectiveTest>>testTodaySeesToday
 self assert: (today sees: today)

PerspectiveTest>>testTodaySeesYesterday
 self assert: (today sees: yesterday).
 self deny: (yesterday sees: today)

Perspective>>sees: does not impose a total ordering on Perspectives. For example, the today and
proactive Perspectives do not see each other:

PerspectiveTest>>testTodaySeesProactive
 self deny: (today sees: proactive).
 self deny: (proactive sees: today).
 self assert: (proactive sees: proactive)

PerspectiveTest>>testTodaySeesRetroactive
 self deny: (today sees: retroactive).
 self deny: (retroactive sees: today).
 self assert: (retroactive sees: retroactive)

First we define Perspective (we omit the Constructor Method #posting:effective:).
Perspective
 Superclass: Object
 Instance variables: posting effective

Here is the implementation of sees:
Perspective>>sees: aPerspective
 ^self posting >= aPerspective posting & (self effective >= aPerspective effective)

Using #sees:, we can re-implement Contract>>versionAt:
Contract>>versionAt: aPerspective
 ^self versions detect: [:each | aPerspective sees: each perspective]

To finish the conversion from Dates as keys to Perspectives as keys we have to implement #> to
impose a total ordering on Perspectives. We sort first by posting date and then by effective date. Here
is the test for Perspective comparison:

PerspectiveTest >>testComparison
 self deny: today > today.
 self deny: yesterday > today.
 self deny: yesterday > proactive.
 self assert: proactive > yesterday

And here is the implementation:
Perspective>> > aPerspective
 ^self posting > aPersective posting | (self posting = aPerspective posting & (self effective > aPerspective
effective))

Navigation Implications
Using Contract and ContractVersion above, you can implement a system for payroll support. When
you are implementing a user interface to search for the pay rate, be sure to include fields for both
posting date and effective date. The field for posting date should default to Future, a Special Case of
Date that is later than any other date. The field for effective date should probably default to now, so
that the pay rate found by default is the pay rate that would be used at the moment.

You also need to provide a user interface for viewing the entire History. If you use Long Transactions
(see below), you will be able to show who put each Version in force and why.

Finally, you will need to provide an interface for adding new versions. The interface should provide a
field for effective date. The effective date should default to now. In normal circumstances the posting
date should be now, and not be editable.

Enumeration Story

Consider an employee who needs lots of changes.
“Hello, payroll support here.”
“I would like to increase my deductions to 6, effectively immediately.”
“Certainly.”

Two days later:
“Hello, payroll support here.”
“I would like to take the additional life insurance coverage we were offered.”
“Certainly. That will be in force as of today. You will notice a half-month’s deduction in you
next paycheck. Thereafter the deduction will be $55.”

Three days later:
“Hello, payroll support here.”
“I would like to begin contributing 5% of my wages every month to the United Way.”
“Certainly. Since this is a monthly deduction, you will see a full month’s deduction on your
next paycheck.”

At the end of the month, the paycheck is correctly computed automatically.

In the story the employee changed the contract (introduced new Versions) several times in a single
pay period. When the time came to process the monthly pay, the paycheck was automatically
calculated in spite of the changes.

Here is a simple test case for an employee who worked every day in January at $1000/day (we don’t
actually recommend working every day for a month, it just makes the arithmetic simpler):

EnumerationTest>>testOneMonthSalary
 | contract version month start end |
 contract := Contract new.
 version := ContractVersion pay: 1000.
 start := '1/1/99' asPerspective.
 end := '2/1/99' asDate.
 contract versionAt: start put: version.
 month := Period from: start effective to: end.
 self assert: (contract salaryIn: month) = 31000

The test cases require that we implement a Period class. Here is a simple version of Period:
Period
 Superclass: Object
 Instance variables: from to

In particular, the implementation of #duration simply subtracts the to date from the from date:
Period>>duration
 ^to subtractDate: from

Financial instruments, for example, have many variations on the difference between two dates.
However, these distinctions don’t matter from the point of view of Period Enumeration.

The test cases also require that we implement Contract>>salaryIn:. An implementation that works for
the first test case uses multiplication:

Contract>>salaryIn: aPeriod
 | version |
 version := self versionAt: (Perspective posting: aPeriod end effective: aPeriod end).
 ^version pay * aPeriod duration

Why did we go to all the trouble of recording the intermediate changes with Perspectives if we aren’t
going to use that information? How can we process part of a month’s pay at one rate and part at
another?

Here is a test case where the salary changes on the 16th of the month.
EnumerationTest>>testChangeSalary
 | contract firstVersion month start end secondVersion change |
 contract := Contract new.
 firstVersion := ContractVersion pay: 1000.
 start := '1/1/99' asPerspective.
 end := '2/1/99' asDate.
 contract versionAt: start put: firstVersion.
 secondVersion := ContractVersion pay: 2000.
 change := '1/16/99' asPerspective.
 contract versionAt: change put: secondVersion.
 month := Period from: start effective to: end.
 self assert: (contract salaryIn: month) = ((15 * 1000) + (16 * 2000))

(We have omitted several other test cases of various odd conditions, which will nevertheless be
accounted for in the code).

One useful method we define on Period is the intersection of two periods:
Period>> intersect: aPeriod
 ^self class
 from: (self from max: aPeriod from)
 to: (self to min: aPeriod to)

With this Period object, we can implement Contract>>in:do:. The implementation strategy is to march
backwards in time (recall that versions is sorted most recent Perspective first), creating a sub-period
starting at the effective date of each Version’s Perspective and ending at the previous sub-period’s
start date.

Contract>>in: aPeriod do: aBlock
 self versions
 inject: aPeriod to
 into:
 [:eachTo :eachVersion || subPeriod |
 subPeriod := Period from: eachVersion effective to: eachTo.
 aBlock value: eachVersion value: (subPeriod intersect: aPeriod).
 eachVersion effective]

Using this method, we can implement Contract>>salaryIn: to take changes of pay into account:
Contract>>salaryIn: aPeriod
 | sum |
 sum := 0.
 self
 in: aPeriod
 do: [:eachVersion :eachPeriod | sum := sum + (eachVersion pay * eachPeriod duration)].
 ^sum

Instead of three lines of code we have six lines, but the resulting method can handle any number of
changes to a contract in any given pay period. And it can easily handle pay periods of different
lengths, another challenge for many legacy systems.

Enumeration Implications
You may be tempted to automatically generate reversals with an #in:do:. A reversal occurs when, for
example:
1. You process January,

Period Enumeration

How do you process a History in a given period, since there may be more than one Version
active in that Period?

Many information systems make the simplifying assumption of a fixed world. When the time comes to
process for a period (a month or a year, for example), the world is assumed to have a single fixed
state, either the state at the beginning or end of the period. While this assumption makes writing
systems easier, it does not reflect the complexity of business interactions.

The consequences of fixing the state of the world during a processing period can be significant. We
have seen a case where a large corporation overpaid USD 5.000.000 in salaries when a large
subsidiary was sold in the middle of a pay period, but the payroll systems were unable to process a
partial month. There are subtler effects also- for example companies that can only sell contracts that
begin on the first of the month.

Implement an enumeration method History>>in: aPeriod do: aBlock. The block executes
repeatedly with two parameters: a Version and the sub-period of the original Period in which
the Version is valid. Do all processing with respect to the Version and the duration of the sub-
period. Do not attempt to automatically generate reversals of previously computed results.
Notify the user of the problem and give them an interface to manually process individuals.

2. You add a version in February whose effective date is in January
3. Now you go to process February

At this point it is possible to automatically discover that you have to undo the old Version’s
processing for January, and then reprocess January and February with the new Version.

We have succumbed to the temptation to automatically generate reversals from time to time. It never
works out in the end. Once you have a situation that complicated, it is unlikely that you have thought
through all the combinations and permutations sufficiently so that your program is guaranteed to do
what you want. Even if you could think everything through perfectly, all that extra thought is unlikely
to be economically reasonable. In that same amount of time you could have added more valuable
features.

We observe that:
• Reversals are reasonably rare
• The cost of making reversals by hand is reasonable
• The likelihood of the need for human intervention is high

If this is your situation, then make a handy interface for an educated person to manually fix the
damage. If a particular reversal becomes routine, you can always automate it later.

Implicit Navigation
Let’s say you wish to write code that reads current values, ignoring history, you would like to be able
to write that code without having to explicitly navigate.

Implicit Navigation

Some clients only care about the current value. How can you preserve Time Travel and still
present a simplified protocol to such clients?

Share a Perspective so clients do not need to use Time Travel if they do not wish to.

We want a test case that creates a Router, then changes its configuration from ‘a’ to ‘b’. The
Perspective used to change objects and to navigate must come from somewhere. We use a Session
object containing the Perspective. (The Session could be stored in thread-local storage to reduce its
scope.) All code that wants to implicitly navigate must run within a Session.

In the following, notice that the message #configuration is sent directly to the History (a Router), not
the Version. This works precisely because we are implicitly navigating with respect to the current
Session.

testRouterChange
 session := Session effective: '12/1/1999' asDate.
 session commit: [router := Router new].
 session commit: [router configuration: 'a'].
 session date: '12/3/1999' asDate.
 session commit:
 [router configuration: 'b'.
 self assert: router versions size = 2].
 session commit:
 [session date: '12/1/1999' asDate.
 self assert: router configuration = 'a'.
 session date: '12/2/1999' asDate.
 self assert: router configuration = 'a'.
 session date: '12/3/1999' asDate.
 self assert: router configuration = 'b']

In implementing this test case, we will start over from scratch. First, we need the Session object.

Object subclass: #Session
 instanceVariableNames: 'date editingVersions '
 classVariableNames: 'Instance '

Its Constructor Method sets the Perspective (in this case just a Date) with which subsequent
navigation will occur.

Session class>>effective: aDate
 | result |
 result := self new.
 result date: aDate.
 ^result

To further hide navigation, a Session could also be created without an explicit Perspective, in which
case a default Perspective seeing the most recent version could be used.

The public protocol of a Session is to commit all the changes that occur within a block. The
implementation sets the shared Session to be the receiver, executes the block, then commits all the
changes that have occurred.

Session>>commit: aBlock
 self begin.
 aBlock value.
 self commit

Session>>begin sets the class variable Instance. Session is like a Singleton in that there is at most one
current Session, but it is different in that the current Session changes.

Session>>begin
 Instance := self

We will show the details of the implementation of #commit later. For now, we can say that Histories
that change (gain a new Version) during a commit block will register with the current Session, so that
when the Session commits, the new Versions are made visible.

We use Version History to create a Router and a RouterVersion.
Object subclass: #Router
 instanceVariableNames: 'versions '
Object subclass: #RouterVersion
 instanceVariableNames: 'date configuration '

The interesting business starts when we want to modify the Router. Talk about editing version

First, the Router must lazily create a RouterVersion which we call an editing version. Every editing
message will be forwarded from the Router to the special RouterVersion recording the changes.
Editing messages in RouterVersion first invoke #edit to be sure there is an editing version.

Router>>configuration: aString
 self edit.
 self version configuration: aString

We found it best for Implicit Navigation to store the editing version in the Session, not the History.
Router>>edit
 self session editingVersionFor: self

The Session stores an IdentityDictionary mapping Histories to editing versions. If a History is not
already being edited, a new Version is created.

Session>>editingVersionFor: aHistory
 ^self editingVersions at: aHistory ifAbsentPut: [aHistory basicEditingVersion]

If no Versions have been committed, a new Version is created for editing. If a History has a Version
at the date of the Session, a copy is returned to avoid modifying an existing Version.

Router>>basicEditingVersion
 self basicVersions isEmpty ifTrue: [^RouterVersion new].
 ^(self versionAt: self session date) copy

The current version of a Router is found by asking the current Session:
Router>>version
 ^self session versionFor: self

The Session returns the editing Version if it exists, or looks up the Version by Date.

Session>>versionFor: aHistory
 ^self editingVersions
 at: aHistory
 ifAbsent: [aHistory versionAt: date]

As promised, we can now explain how a Session commits its changes. It commits the editing
Versions, clears the dictionary of versions, and clears the shared reference to itself.

Session>>commit
 self commitEdits.
 editingVersions := nil.
 Instance := nil

To commit an editing Version, the Perspective of the Version (in this case just a Date) is set, and the
Version is added to the History.

Session>>commitEdits
 self editingVersions keysAndValuesDo:
 [:eachHistory :eachVersion |
 eachVersion date: date.
 eachHistory addVersion: eachVersion]

To complete the story, the accessor for the configuration is forwarded from the History to the Version.
Router>>configuration
 ^self version configuration
RouterVersion>>configuration
 ^configuration

Versioning Associations

A related problem to versioning simple attributes is versioning associations.

For example, we can connect routers to other routers. In this test case we connect a router to router2
on 12/1, and also to router3 on 12/3.

RouterTest>>testAddingAssociations
 | router2 router3 |
 session := Session effective: '12/1/1999' asDate.
 session commit: [router := Router new].
 session commit:
 [router2 := Router new.
 router connectTo: router2].
 session commit:
 [self assert: router connectedRouters size = 1.
 self assert: (router isConnectedTo: router2)].
 session date: '12/3/1999' asDate.
 session commit:
 [router3 := Router new.
 router connectTo: router3].
 session commit:
 [self assert: router connectedRouters size = 2.
 self assert: (router isConnectedTo: router2).
 self assert: (router isConnectedTo: router3)].
 session date: '12/1/1999' asDate.
 session commit:
 [self assert: router connectedRouters size = 1.
 self assert: (router isConnectedTo: router2)]

The implementations of #connectTo:, #connectedRouters, and #isConnectedTo: are straightforward.
However, to avoid changing the collection of connected routers accidentally we must augment the
copy code by also copying the collection.

RouterVersion>>postCopy
 super postCopy.
 connectedRouters := connectedRouters copy

When the second editing Version is created, the first Version is copied. By copying the collection,
additions and deletions will only affect the editing Version.

Other Patterns
Long Transactions

Business transactions can take months or years to complete. How can you partially update a
Version while continuing to process with the previous Versions?

Create a Task object to represent the business transaction. Create a special Perspective that
is only seen by other Perspectives within that Task.

Evaluated Version

How do you model continuously changing values, like the surrender value of an insurance
contract?

Extend History>>versionAt: to copy the Version, then give the Version a chance to update its
values. Store the Perspective used for look up in the returned Version. This way you don’t
have to always pass around the Perspective.

Missing Version

How do you avoid having to check whether a Version exists at a given Perspective?

Create a Special Case of the Version called MissingVersion. Return a MissingVersion if the
Perspective used in #versionAt: is before the beginning of the History. Give the
MissingVersion the same protocol as the Version, but return default values or throw
exceptions as appropriate.

Inactive Version

How do you represent the end of a History?

Create a Special Case of the Version called InactiveVersion. Commit an InactiveVersion when
the History is over. Give the InactiveVersion the same protocol as the Version, but return
default values or throw exceptions as appropriate.

Trade Date/Settle Date

How do you represent the difference between the trade date and the settle date when trading
financial instruments?

Instead of a single Effective Date, add two dates to the Perspective, one for the trade date and
one for the settle date. Then, create two special Perspectives, TradePerspective and
SettlePerspective, that implement #sees: according to one date or the other. Accounting
applications navigate with SettlePerspectives. Trading applications navigate with
TradePerspectives.

References
Francis Anderson, A Collection of History Patterns, University of Washington, Department of
Computer Science, Technical Report TR#WUCS-98-25.

Kent Beck, Smalltalk Best Practice Patterns, Prentice-Hall 1996 – Many of the implementation
patterns that appear here are from this reference.

Andy Carlson, Sharon Estepp, Martin Fowler, Temporal Patterns, University of Washington,
Deportment of Computer Science, Technical Report TR#WUCS-98-25.

Ward Cunningham, Personal communication, 1999 – The WyCash bond portfolio management
system had many of the same features as those generated by Time Travel.

Martin Fowler, Analysis Patterns – Reusable Object Models, Addison Wesley, 1997.

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design Patterns – Elments of Reusable
Object-Oriented Software, Addison-Wesley, 1995.

Manfred Lange, Time Patterns, University of Washington, Deportment of Computer Science,
Technical Report TR#WUCS-98-25.

Frederick Winslow Taylor, The Principles of Scientific Management, Inst of Industrial Engineers,
1998 (1st edition 1911) – Taylor laid out the basics of work breakdown and specialization, ideas that
we believe have caused enormous human and economic suffering when applied to information
systems and information workers.

Acknowledgements
Special thanks to Ward Cunningham, our shepherd, for his insights into structuring this paper. Thanks
also to the rest of the LifeWare team- Giovanni Müller, Lara Pfyffer Gianocca, Willi Dürig, and
Marco Gianocca.

Manfred would like to thank James Noble for his great support during preparation of my paper “Time
Cursor”, which was workshopped at the conference. However, Kent and I thought, that it would be
easier to integrate the ideas presented in my paper into “Time Travel”. I also want to thank Kent for
the time he spent working with me. The things I learned from him do have an “extreme” impact on
my daily work!

In addition we want to encourage other authors with papers that are similar to merge them. This
would make it far easier for all of us to learn about the great ideas presented in those papers.

